e-Assessment
To Best view our website it is recommended to use Mozilla FireFox Browser .For counselling, help and subscription contact JaiPrakash 09868386865
AIPMT 2014
Study Materials

For more details on AIPMT click aipmt.testbag.com

The content of study material is large. As such we are only placing below a part of the same for review of our readers

THE LIVING WORLD

AND

BIOLOGICAL CLASSIFICATION

Contents

1. THE LIVING WORLD (DIVERSITY IN THE LIVING WORLD)

1.1 Living Organism

1.1.1 Introduction

1.1.2 Definition

1.1.3 Definition of Life

1.1.4 Characteristics of Living Organisms

   1.1.4.1 Cellular Structure

  1.1.4.2 Organisation

  1.1.4.3 Energy

  1.1.4.4 Homeostasis

  1.1.4.5 Metabolism

  1.1.4.6 Growth

  1.1.4.7 Consciousness or Sensitivity

  1.1.4.8 Movements

  1.1.4.9 Variations

  1.1.4.10 Adaptations

  1.1.4.11 Reproduction

  1.1.4.12 Regulation

  1.1.4.13 Irritability

  1.1.4.14 Evolution

  1.1.4.15 Interactions

  1.1.4.16 Emergent Properties

  1.1.4.17 Life span and Life Cycle

  1.1.4.18 Death

1.1.5    Points to Remember

1.2. Diversity in the Living World

1.2.1 Introduction

1.2.2 Definition

1.2.3 What is living

1.2.4 Systematics and Classification

1.2.5 History of Classification

1.2.6 Importance of Classification

1.2.7 Classification and Evolution

1.2.8 New Systematics

1.2.9 Basics in Classification

1.2.10 Nomenclature

1.2.11 Rules of Binomial Nomenclature

1.2.12   Points to Remember

 

 

1.3. Taxonomic Categories

1.3.1 Introduction

1.3.2    Definition

1.3.3 Taxonomic Categories

1.3.3.1                Species

1.3.3.2                Genus

1.3.3.3                Family

1.3.3.4                Order

1.3.3.5                Class

1.3.3.6                Phylum

1.3.3.7                Kingdom

1.3.3.8                Domain

1.3.4   Points to Remember

1.4 Taxonomic Aids

1.4.1 Introduction

1.4.2 Definition

1.4.3 Taxonomic Aids

1.4.3.1 Herbarium

1.4.3.2 Botanical Gardens

1.4.3.3 Museum

1.4.3.4 Zoological Parks

1.4.3.5 Key

        1.4.4 Points to Remember

2. BIOLOGICAL CLASSIFICATION

 

2.1Principles of Systematics

2.1.1 Introduction

2.1.2 Definition

2.1.3 Kingdom Monera

2.1.3.1 Archaebacteria

2.1.3.2 Eubacteria

2.1.4 Kingdom Protista

2.1.4.1 Chrysophytes

2.1.4.2 Dinoflagellates

2.1.4.3 Euglenoids

2.1.4.4 Slime Moulds

2.1.4.5 Protozoans

2.1.5 Kingdom Fungi

2.1.5.1 Phycomycetes

2.1.5.2 Ascomycetes

2.1.5.3 Basidiomycetes

2.1.5.4 Deuteromycetes

2.1.6 Kingdom Plantae

2.1.7 Kingdom Animalia

2.1.8 Viruses, Viroids and Lichens

2.1.9    Points to Remember

 

 

 

2.2. Kingdom Monera

2.2.1 Introduction

2.2.2 Definition

2.2.3 Kingdom Monera

2.2.3.1 Archaebacteria

2.2.3.2 Eubacteria

2.2.4    Points to Remember

2.3. Kingdom Protista

2.3.1 Introduction

2.3.2 Definition

2.3.3 Kingdom Protista

2.3.3.1 Chrysophytes

2.3.3.2 Dinoflagellates

2.3.3.3 Euglenoids

2.3.3.4 Slime Moulds

2.3.3.5 Protozoans

2.3.4    Points to Remember

2.4 Kingdom Fungi

2.4.1 Introduction

2.4.2 Definition

2.4.3 Kingdom Fungi

2.4.3.1 Phycomycetes

2.4.3.2 Ascomycetes

2.4.3.3 Basidiomycetes

2.4.3.4 Deuteromycetes

2.4.4    Points to Remember

2.5. Kingdom Plantae

2.5.1 Introduction

2.5.2 Definition

2.5.3 Kingdom Plantae

2.5.4    Points to Remember

2.6. Kingdom Animalia

2.6.1 Introduction

2.6.2 Definition

2.6.3 Kingdom Animalia

2.6.4    Points to Remember

2.7. Viruses, Viroids and Lichens

2.7.1 Introduction

2.7.2 Definition

2.7.3 Viruses, Viroids and Lichens

2.7.4 Points to Remember

 

 

 

 

 

 

 

 

 

 

ANIMAL DIVERSITY AND SYSTEMATICS

AND

ANIMAL KINGDOM

 

Contents

 

1. ANIMAL DIVERSITY AND SYSTEMATICS

1.1 Introduction

1.2 Definition

1.3 General Features of Animals

1.4 Level or Grades of Organization

      1.4.1 Protoplasmic Grade

      1.4.2 Cellular Grade

      1.4.3 Cell-Tissue Grade

      1.4.4 Tissue-Organ Grade

      1.4.5 Organ-System Grade

1.5 Animal Body Plans

1.6 Animal Symmetry

      1.6.1 Asymmetry

 1.6.2 Spherical Symmetry

 1.6.3 Radial Symmetry

1.6.4 Biradial Symmetry

1.6.5 Bilateral Symmetry

1.7 Body Planes

1.8 Germ Layers

1.9 Cephalisation

1.10 Appendages

1.11 Metameric Segmentation

1.12 Body Cavity or Coelom

        1.12.1 Acoelomates

        1.12.2 Pseudocoels

        1.12.3 Coeloms

        1.12.4 Haemocoels

1.13 Body Temperature

1.13.1 Cold Blooded or Poikilothermic or Ectodermic Animals

1.13.2 Warm Blooded, Homoiothermic or Endothermic Animals

1.13.3 Difference between Cold Blooded and Warm Blooded Animals

1.14 Sex

1.15 Asexual and Sexual Reproduction

1.15.1 Asexual reproduction

1.15.2 Sexual reproduction

1.15.2.1 Gametogenesis

1.15.2.2 Fertilisation

1.16  Ovipary and Vivipary

1.16.1 Differences between Ovipary and Vivipary

1.17 Embryogenesis

1.17.1 Cleavage

1.17.2 Blastulation

1.17.3 Gastrulation

1.17.4 Organogenesis

1.18 Development

1.18.1   Direct Development

1.18.2   Indirect Development

1.18.3   Differences Between Direct and Indirect Development

1.19 Digestive Tract

1.19.1 Differences between Intracellular and Extracellular Digestion

1.20 Respiration

1.21 Circulatory System

1.22 Excretory System

1.23 Nervous System

1.24 Sensory System

1.25 Endocrine System

1.26 Skeletal System

1.26.1 Difference between Exoskeleton and Endoskeleton

1.27 Protostomes and Deuterostomes

1.28 Classification of Animals

1.29 Points to Remember

 

2. ANIMAL KINGDOM

 

2.1 Introduction

2.2 Definition

2.3 Basis of Classification

2.3.1 Levels of Organisation

2.3.2 Patterns in Organ-System

2.3.3 Symmetry

2.3.4 Diploblastic and Triploblastic Organisation

2.3.5 Coelom

2.3.6 Segmentation

2.3.7 Notochord

2.4 Classification of Animals

2.4.1 Phylum Porifera

2.4.2 Phylum Coelenterata

2.4.3 Phylum Ctenophora

2.4.4 Phylum Platyhelminthes

2.4.5 Phylum Asclehelminthes

2.4.6 Phylum Annelida

2.4.7 Phylum Arthropoda

2.4.8 Phylum Mollusca

2.4.9 Phylum Echinodermata

2.4.10 Protochordata

2.4.10.1 Phylum Hemichordata

2.4.10.2 Urochordata

2.4.10.3 Cephalochordata

2.4.11 Phylum Chordata

2.4.11.1 Division- Agnatha 

2.4.11.1.1 Class-Cyclostoma

2.4.11.2 Division- Gnathostomata

2.4.11.2.1 Super Class- Pisces

2.4.11.2.1.1 Class-Chondrichthyes

2.4.11.2.1.2 Class- Osteichthyes

2.4.11.2.2 Super Class- Tetrapoda

2.4.11.2.2.1 Class- Amphibia

2.4.11.2.2.2 Class- Reptilia

2.4.11.2.2.3 Class-Aves

2.4.11.2.2.4 Class-Mammalia

2.5 Points to Remember

 

 

 

 

 

CELL BIOLOGY

(CELL STRUCTURE & FUNCTION)

Contents

 

1. CELL STRUCTURE (CELL: THE UNIT OF LIFE )

1.1 Introduction

1.2 Definition

1.3 What is a Cell

1.3.1 Discovery of Cell

1.3.2 Cell Theory

1.3.3 Basic properties of Cell

1.3.4 Unicellular and Multicellular Organisms

1.3.5 Totipotency

1.3.6 Cell Size and Shape

1.4  An Overview of Cell

1.4.1 Difference between Plant and Animal Cell

1.5  Prokaryotic Cells

1.5.1 Cell Envelope and its Modifications

1.6  Eukaryotic Cells

1.6.1 Comparison of features of prokaryotic and eukaryotic cells

1.6.2 Comparison of structures between animal and plant cells

1.6.3 Structural Organization of the Cell

1.6.4 Cell Wall

1.6.5 Cell Membrane

1.6.6 Cytoplasm

1.6.7 Endomembrane System 

1.6.7.1 The Endoplasmic Reticulum (ER)

1.6.7.2 Golgi apparatus

1.6.7.3 Lysosomes and Peroxisomes

1.6.7.4 Vacuoles

1.6.8 Mitochondria

1.6.9 Plastids

1.6.10 Ribosomes

1.6.11 Cytoskeleton

1.6.12 Cilia and Flagella

1.6.13 Centrosome and Centrioles

1.6.14 Nucleus and Nucleolus

1.6.15 Microbodies

1.7 Points to Remember

 

 

 

2. TOOLS AND TECHNIQUES

2.1   Introduction

2.2   Definition

2.3   Units of Measurement

2.4   Microscopy

2.4.1    Bright Field Light Microscope or Compound Microscope

2.4.2    Dark Field Microscope

2.4.3    Phase Contrast Microscope

2.4.4    Interference Microscope

2.4.5    Polarizing Microscope

2.4.6    Ultraviolet Microscope

2.4.7    Cofocal Microscope

2.4.8    Fluorescence Microscope

2.4.9    Electron Microscope

2.4.10 Scanning Tunnelling Microscope (STM)

2.4.11  Landmarks in Microscopy

2.5   Cell Fractionation

2.6   Spectrophotometry

2.7   Chromatography

2.8   Electrophoresis

2.9   Landmarks in the Development of Chromatography and Electrophoresis

2.10 X-Ray Diffraction

2.11 Autoradiography

2.12 Cytologic Staining

       2.12.1  Vital Staining

       2.12.2 Gram Staining

2.13 Histochemistry and Cytochemistry

2.13.1 Common Histochemical Techniques

2.13.2 Stains for Chromosomes

2.14 Chromosome Banding Techniques

2.15 Points to Remember

 

3. BIOMOLECULES

 

3.1   Introduction

3.2   Definition

3.3   Analysis of Chemical Composition

3.4   Primary and Secondary Metabolites

3.5   Biomacromolecules

3.6   Carbohydrates

3.7   Proteins

       3.7.1   Structure of Proteins

       3.7.2   Function of Proteins

3.7.3   Amino Acids

3.8   Polysaccharides

3.9   Nucleic Acids

3.10 Nature of Bond Linking Monomers in a Polymer

3.11 Dynamic State of Body Constituents-Concept of Metabolism

3.12 Metabolic Basis for Living

3.13 The Living State

3.14 Enzymes

       3.14.1 Chemical Reactions

       3.14.2 Properties of Enzymes

       3.14.3 Nature of Enzyme Action

       3.14.4 Inhibition of Enzyme Action

3.14.5 Factors Affecting Enzyme Activity

       3.14.6 Nomenclature of Enzymes

3.14.7 Classification of Enzymes

3.14.8 Co-factors

3.15 Points to Remember

 

4. CELL RESPIRATION

4.1   Introduction

4.2   Definition

4.3   Anaerobic Respiration

4.4   Aerobic Respiration

4.5   Fermentation

4.6   Glycolysis

4.7  The Krebs Cycle

4.8  Oxidative Phosphorylation

4.9   Electron Transport Chain

4.10 Theoretical yields

4.11 Points to Remember

 

5. CELL CYCLE AND CELL DIVISION

5.1 Introduction

5.2 Definition

5.3 Cell Cycle

5.3.1 Karyokinesis

5.3.1.1 Prophase

5.3.1.2 Metaphase

5.3.1.3 Anaphase

5.3.1.4 Telophase

5.3.2 Cytokinesis

5.3.3 Significance of Mitosis

5.3.4 Miscellaneous Points

5.4 Meiosis

  5.4.1 Types of Meiosis

  5.4.2 Meiosis I

5.4.2.1 Prophase

5.4.2.1.1 Leptotene

5.4.2.1.2 Zygotene

5.4.2.1.3 Pachytene

5.4.2.1.4 Diplotene

5.4.2.1.5 Diakinesis

5.4.2.2 Metaphase I

           5.4.2.3 Anaphase I

           5.4.2.4 Telophase I  

5.4.3 Meiosis II

5.4.3.1 Prophase II

5.4.3.2 Metaphase II

5.4.3.3 Anaphase II

5.4.3.4 Telophase II

   5.4.4 Significance of Meiosis

5.5 Difference between Mitosis and Meiosis

5.6 Points to Remember

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENETICS AND MOLECULAR BIOLOGY

Contents

 

1.     Heredity and Variation (Mendelian Genetics)

1.1 Introduction

1.2 Definition

1.3 Mendel’s Laws of Inheritance

1.4 Inheritance of One Gene

 1.4.1 Law of Dominance

 1.4.2 Law of Segregation

              1.4.2.1 Incomplete Dominance

              1.4.2.2 Co-dominance                  

1.5 Inheritance of Two Genes

      1.5.1 Law of Independent Assortment

      1.5.2 Chromosomal Theory of Inheritance

      1.5.3 Linkage and Recombination

1.6 Sex Determination

      1.6.1 Sex Determination in Humans

1.7 Mutation

1.8 Genetic Studies on Some Organisms

1.9 Points to Remember

2.     Chromosomal  Basis of Inheritance

2.1 Introduction

2.2 Definition

2.3 Chromosomes

    2.3.1 Prokaryotic Chromosomes

    2.3.2 Eukaryotic Chromosomes

                    2.3.2.1 Diploids and Haploids

                    2.3.2.2 Morphology of Eukaryotic Chromosomes

                    2.3.2.3 Chemical Structure Chromosomes

                    2.3.2.4 Molecular Structure of Chromosomes

                    2.3.2.5 Materials of Chromosomes

                    2.3.2.6 Kinds of Chromosomes

          2.3.2.7 Karyotype and Idiogramss

 

     2.4 The Chromosome Theory of Inheritance

     2.5 Special Types of Chromosomes

     2.6 Sex Linkage

     2.7 Linkage and Crossing Over

     2.8 Extra Chromosomal Inheritance

     2.9 Mutation

     2.10 Sex Determination

2.10.1 Sex Determination in Humans

     2.11 Genes

     2.12 Points to Remember

3. Gene Expression And Regulation

3.1 Introduction

3.2 Definition

3.3 Chemical Basis of Heredity

       3.3.1 Chemical Composition of gene

3.4  Nucleic Acids

            3.4.1 Nucleobases

       3.4.2 Nucleosides

       3.4.3 Nucleotides and deoxynucleotides

3.5  The DNA

        3.5.1 Structure of Polynucleotide Chain

             3.5.2 Packaging of DNA Helix

3.6   The Search for Genetic Material

        3.6.1 Transforming Principle

        3.6.2 Biochemical Characterisation of Transforming Principle

        3.6.3 The Genetic Material is DNA

        3.6.4 Properties of Genetic Material (DNA versus RNA)

3.7   RNA World

3.8   Replication

        3.8.1 The Experimental Proof

        3.8.2 Machinery and the Enzymes

3.9   Transcription

        3.9.1 Transcription Unit

        3.9.2 Transcription Unit and the Gene

        3.9.3 Types of RNA and the process of Transcription

        3.9.4 Steps in Transcription

 

3.10 Genetic Code

         3.10.1 Mutations and Genetic Code

         3.10.2 tRNA- the Adapter Molecule

3.11 Translation

3.12 The Father of Genetic Translation

3.13 Regulation of Gene Expression

        3.13.1 The Lac Operon

3.14   Points to Remembers

4. Genetic Engineering Cloning And Genomics

4.1 Introduction

4.2 Definition

4.3 Genetic Engineering

4.4 Cloning

4.5 Genomics

4.6 Achievements of Genetic Engineering

4.7 Points to Remember

5. Human Genetics

     5.1 Introduction

     5.2 Definition

     5.3 Human Chromosomes

 5.3.1 Banding Patterns in Human Chromosomes

           5.3.2 Normal Human Karyotype

           5.3.3 Human Chromosomal Aberrations

         5.3.3.1 Numerical Aberrations

                   5.3.3.2 Structural Aberrations

     5.4 Mendelian Traits in Human

   5.4.1 Mendelian Disorders

                   5.4.1.1 Hemophilia

            5.4.1.2 Sickle Cell Anemia

5.4.1.3 Phenylketonuria

           5.4.2 Chromosomal Disorders

5.4.2.1 Down’s Syndrome

5.4.2.2 Klinefelter Syndrome

5.4.2.3 Turner’s Syndrome    

 

 

 

 

5.5 Genetic Diseases and Inheritance Patterns

5.5.1 Autosomal Inheritance - Dominant

                                          Recessive

                                           Blood Group Inheritance

5.5.2 Sex Chromosomes Linked - X- Linked Recessive

                                             - Y-Linked

                                             - XY –Linked

5.5.3 Multifactorial Inheritance

5.6 Pedigree Studies

5.7 Immunogenetics

5.8 Dermatoglyphics

5.9 Prenatal Diagnosis

5.10Eugenics, Euthenics and Euphenics

5.11Genetics and Society

 5.11.1 Human Genome Project

5.11.2     Forensic Science

5.11.3 DNA Finger printing

5.11.4 Human Health Care

5.11.5 Gene Therapy

5.12 Points to Remember

 

 

Some Basic Concepts of chemistry

&

CHEMISTRY IN EVERYDAY LIFE

 

Contents

 

1.     Some Basic Concepts of Chemistry

1.1      Introduction

1.2      Measurement of Physical Quantities

1.2.1 Precision and Accuracy

1.2.2 Significant Figures

1.2.3 Dimensional Analysis

1.3    Matter

1.3.1 Physical classification

1.3.1.1 Solid

1.3.1.2 Liquid

1.3.1.3 Gas

1.3.2 Chemical Classification

1.3.2.1 Element

1.3.2.2 Compound

1.3.2.3 Mixture

1.4    Laws of Chemical Combination

1.4.1 Law of Conservation of mass

1.4.2 Law of constant composition/definite proportions

1.4.3 Law of Multiple Proportions

1.4.4 Law of Reciprocal Proportions

1.4.5 Gay Lussac’s Law of Gaseous Volumes

1.4.6 Avogadro’s law

1.5    Dalton’s Atomic Theory

1.5.1 Modified Dalton’s Atomic Theory

1.6    Atomic and Molecular Masses

1.6.1 Atomic Mass Unit

1.6.2 Atomic Mass

1.6.3 Gram Atomic Mass

1.6.4 Molecular Mass

1.6.5 Gram Molecular Mass

1.7    Mole concept

1.8    Chemical Formula

1.8.1 Empirical formula

1.8.2 Molecular formula

1.9  Chemical equation and Stoichiometry

1.9.1 Balancing of Chemical Equation

1.9.2 Stoichiometry

1.9.2.1 Limiting reagent

1.10 Mole concept in Solutions

1.10.1 Mass percent or weight percent (w/w %)

1.10.2 Mole fraction

1.10.3 Molarity

1.10.4 Molality

1.10.5 Normality

2.     Chemistry in Everyday Life

2.1    Introduction

2.2    Chemistry in Dyes

                2.2.1 Colour and Constitution

                 2.2.1.1 Chromophores

   2.2.1.2 Auxochromes

2.2.2 Classification of Dyes

2.2.2.1 On the basis of chemical constitution

2.2.2.2 On the basis of application

     2.3    Chemistry in Medicines

                2.3.1 Drugs or Medicines

                2.3.2 Classification of Drugs

                       2.3.2.1 On the basis of Pharmacological Effect

                       2.3.2.2 On the basis of Drug Action

                       2.3.2.3 On the basis of Chemical Structure

                       2.3.2.4 On the basis of molecular targets

2.3.3 Drug-Target interaction

          2.3.3.1 Enzymes as Drug Targets

         2.3.3.2 Receptors as Drug Targets

2.3.4 Types of Drugs on the basis of drug action

2.3.4.1 Antacids

            2.3.4.2 Antihistamines

           2.3.4.3 Tranquillizers

           2.3.4.4 Analgesics

           2.3.4.5 Antipyretics

           2.3.4.6 Antimicrobials

           2.3.4.7 Antibiotics

2.3.4.8 Sulpha Durgs

2.3.4.9 Antimalarials

2.3.4.10 Antiseptics and Disinfectants

2.3.4.11 Antifertility drugs

2.4    Chemistry in Food

2.4.1 Artificial Sweetening Agents

2.4.1.1 Saccharin (o- sulphobenzimide)

2.4.1.2 Aspartame

          2.4.1.3 Alitame

2.4.1.4 Sucralose

2.4.1.5 Cyclamate

2.4.1.6 L-Glucose

               2.4.2. Preservatives.

                      2.4.2.1 Table Salt

                      2.4.2.2 Sugar

                      2.4.2.3 Vegetable Oils

                      2.4.2.4 Sodium benzoate

                      2.4.2.5 Sodium metabisulphite

                      2.4.2.6 Sorbic acid and its salts

                      2.4.2.7 Epoxides

                      2.4.2.8 p-Hydroxybenzoate esters

2.5    Chemistry of Cleansing Agents 

2.5.1 Soaps

2.5.1.1 Manufacture of Soaps

          2.5.1.2 Types of Soaps

          2.5.1.3 Advantages and Disadvantages of using soap as cleansing agents

2.5.2 Synthetic Detergents or Soapless Soaps

2.5.2.1 Classification, synthesis and uses of detergents

   2.5.2.2 Advantages of synthetic detergents over soaps

   2.5.2.3 Disadvantages of Detergents

2.6    Chemicals in Rocket Fuels

2.6.1 Introduction to Space Chemistry

2.6.2 Propellants of Rocket and Guided Missiles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

States of Matter

Contents

1. Introduction

2. Gaseous State

    2.1 Measurable properties of gases

    2.2 Gas laws

         2.2.1 Boyle’s law

          2.2.2 Charles’ law

2.2.3 Avogadro’s law

         2.2.4 Combined Ideal Gas Law 

         2.2.5 Dalton’s law of partial pressure

         2.2.6 Graham’s law of diffusion

   2.3 Kinetic Molecular theory of gases

         2.3.1 Maxwell – Boltzmann distribution of molecular speeds

          2.3.2 Kinetic Gas Equation

          2.3.3 Average Kinetic Energy and Absolute Temperature

          2.3.4 Collision Properties and Velocities of Molecules

 

   2.4 Behaviour of Real gases

2.4.1 Vander Waals equation

2.4.2 Liquefaction of gases

2.4.3 Critical Constants

         2.4.4 Boyle’s Temperature and Inversion Temperature

 

3. Liquid State

    3.1 Properties of Liquids

3.1.1 Vapour Pressure

3.1.2 Viscosity

3.1.3 Surface tension

4. Solid State

    4.1 Properties of solids

    4.2 Types of solids

          4.2.1 Amorphous solids

            4.2.2 Crystalline solids

4.3 Classification of Crystalline solids

     4.3.1 Molecular crystals

     4.3.2 Ionic crystals

     4.3.3 Covalent or Network crystals

     4.3.4 Metallic crystals        

4.4 X-Ray Studies of Crystalline solids

4.5 Crystal Lattices and Unit Cell

     4.5.1 Types of Unit cell

     4.5.2 Packing of Constituent Particles in Crystals

     4.5.3 Packing efficiency

4.6 Imperfection in Crystalline solids

     4.6.1 Stoichiometric defects

     4.6.2 Non - Stoichiometric defects

     4.6.3 Impurity defects

    4.7 Properties of Crystalline solids

          4.7.1 Electrical Properties of Solids

          4.7.2 Magnetic Properties of Solids

          4.7.3 Dielectric Properties of Solids

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOLUTIONS

                                                                                                Contents

1.     Introduction

2.     Methods of expressing the concentration of a solution

            2.1  Percentage

                          2.1.1 Mass Percentage or Percent by Mass

                          2.1.2 Volume Percentage or Percent by Volume

2.2 Strength (Concentration in grams per litre)

     2.3 Parts Per Million (ppm)

     2.4 Parts Per Billion (ppb)

     2.5 Molarity

              2.5.1 Molarity of dilution

            2.5.2 Molarity of mixing

     2.6 Normality

          2.6.1 Normality of dilution

          2.6.2 Normality of mixing

     2.7 Molality

     2.8 Formality

     2.9 Mole Fraction

     2.10 Mole %

     2.11 Mass Fraction

3.  Types of Solutions

3.1 Solutions of Gases in Liquids

           3.1.1 Henry’s Law of Vapour Pressure

                     3.1.1.1 Applications of Henry’s Law

               3.1.1.2 Limitations of Henry’s Law

     3.2 Solutions of Liquids in Liquids

            3.2.1 Solubility Principles for Liquid-Liquid Solutions

            3.2.2 Vapour Pressure of Liquid Solutions

            3.2.3 Raoult’s Law of Vapour Pressure for Volatile Solutes

           3.2.4 Ideal and Non-ideal Solutions

                   3.2.4.1 Ideal Solutions

                    3.2.4.2 Non-ideal Solutions

                    3.2.4.3 Azeotropic Mixtures or Constant Boiling Mixtures

    3.3   Solutions of Solids In Liquids

           3.3.1 Raoult’s Law of Vapour Pressure for Non-volatile Solutes         

           3.3.2 Colligative Properties of Dilute Solutions

              3.3.2.1 Relative Lowering in the Vapour Pressure

              3.3.2.2 Elevation of Boiling Point

              3.3.2.3 Depression of Freezing Point

                     3.3.2.4 Osmotic Pressure

    3.4   Abnormal Colligative Properties and Abnormal Molecular Masses

           3.4.1  van’t Hoff factor (i) in case of dissociation

            3.4.2  van’t Hoff factor (i) in case of association

 

 

 

 

ATOMIC STRUCTURE

&

CHEMICAL BONDING

Contents

1. Atomic Structure

 

1.1 Introduction

 

1.2 Discovery of Fundamental Particles

1.2.1 Discovery of Electron

1.2.2 Discovery of Proton

1.2.3 Discovery of Neutron

1.2.3.1 Moseley Experiment–Atomic Number

 

1.3 Atomic Models

1.3.1 Thomson’s Model

1.3.2 Rutherford Model

1.3.3 Bohr’s Model for Hydrogen Atom

1.3.4 Sommerfeld Extension to Bohr’s Model

       1.3.5 Quantum Mechanical Model of Atom

 

1.4 Dual Nature of Radiation and Matter

1.4.1 Wave Nature of Electromagnetic Radiation

1.4.1.1 Electromagnetic Wave Theory

1.4.1.2 Atomic Spectra

1.4.2 Particle Nature of Electromagnetic Radiation

1.4.2.1 Black Body Radiation and Photoelectric Effect

1.4.2.2 Planck’s Quantum Theory

1.4.3 Dual Nature of Matter

1.4.3.1 The De Broglie Relationship

1.4.3.2 Heisenberg’s Uncertainty Principle

 

1.5 Quantum Numbers

1.5.1 Principal Quantum Number

1.5.2 Azimuthal Quantum Number

1.5.3 Magnetic Quantum Number

1.5.4 Spin Quantum Number

 

1.6 Atomic Orbitals

1.6.1 Shapes of Atomic Orbitals

1.6.2 Energies of Atomic Orbitals

1.6.3 Filling of Orbitals in Atoms

 

1.7 Electronic Configuration of Atoms

 

1.8 Atomic Terms

1.8.1 Atomic Number

1.8.2 Nucleons

1.8.3 Mass Number

1.8.4 Atomic Mass Unit

1.8.5 Atomic Species

 

2. CHEMICAL BONDING

2.1 Introduction

2.2 Electronic Theory Of Valency

2.3 Ionic bond

      2.3.1 Conditions for the formation of ionic bond

      2.3.2 Factors Governing the Formation of lonic Bonds

      2.3.3 General characteristics of ionic compounds

2.4 Covalent Bond

      2.4.1 Formal Charge (F.C.) on an atom in a molecule/ion

       2.4.2 General characteristics of covalent compounds

       2.4.3 Types of Covalent Bonds-Sigma and Pi Bonds  

              2.4.3.1 Sigma (s) bond

              2.4.3.2 Pi (p) Bond

       2.4.4 Some Important Bond Characteristics

2.5 Polar Covalent Bonds – Electronegatitivy

2.6 Dipole Moments

      2.6.1 Dipole moment and percentage ionic character

      2.6.2 Transition from ionic to covalent bond – Fajans’ rule

2.6.3 Factors influencing ion – deformation or increasing covalent   character

2.7 Lewis Structures Of Molecules

      2.7.1  Limitations of Lewis theory of drawing structure

2.8 Co-Ordinate Covalent Bond or Dative Bond

      2.8.1 General characteristics of coordinate

Covalent   compounds

      2.8.1.1 Resonance

2.9  Valence shell electron pair repulsion (VSEPR) theory

       2.9.1 Molecules in which the central atom has one or more lone   

                   pairs

       2.9.2 Prediciting geometry of species using vsepr theory

       2.9.3 Limitations of vsepr theory and advent of valence bond

2.10 Valence Bond Theory

2.11  Hybridization of Atomic Orbitals and the Shape of Molecules

         2.11.1 Summary of Hybridization

         2.11.2 Electron-Pair Geometry and Molecular Geometry

2.12 Molecular Orbital Theory

        2.12.1 Comparison of Valence Bond and Molecular orbital theories

 2.13 Hydrogen bonding

         2.13.1 Types of Hydrogen Bonding

         2.13.2 Properties of Hydrogen Bond

         2.13.3 Significance of hydrogen bonding in biological systems

 

GENERAL PHYSICS 

&

MECHANICS

Contents

1.     General physics (Physics and Measurement)

1.1 Physics, technology and society

1.1.1    What is physics?

1.1.2    Scope and excitement of physics

1.1.3    Physics, technology and society

1.1.4    Physics in relation to science

1.1.5    Physics related to society and technology

1.1.6    Link between technology and physics

1.2    Unit and Dimensions

1.2.1    Need for measurement of physical quantities

1.2.2    Unit

1.2.2.1       System of units

1.2.2.2       Derived units

1.2.3    Dimensions

1.2.3.1 Dimensional equation

1.2.3.2 Principle of homogeneity

1.2.3.3 Uses of dimensional analysis

1.2.3.4 Limitations of the theory of dimensions

1.3    Order of magnitude

1.4    Significant figures and errors analysis

1.4.1    Significant figures

1.4.1.1 Rules for calculating significant figures

1.4.1.2 Rounding off the numbers

1.4.1.3 Significant figures in algebraic operations

1.4.2    Errors

1.4.2.1 Percentage error

1.4.2.2 Propagation of errors

1.5    Least count, accuracy and precision of measuring instruments

1.5.1    Least count

1.5.2    Accuracy of measurement

1.5.3    Precision

1.6 Graph

1.6.1 Uses of Graph

1.6.2 Importance of Graphs

1.7 Trigonometric functions

1.7.1 Definition of trigonometric ratios

1.7.2 Fundamental Trigonometrical Relations

1.7.3 T-Ratios of Allied angles

1.7.4 Values of T-ratios of some angles

1.7.5 Difference Formulae

1.7.6 Transformation formulae

1.7.7 The sine and cosine formulae for a triangle

1.8 Differentiation

1.8.1 Physical Example of Differential Coefficient as Rate of Measurement

1.8.2 Fundamental Formulae of Differentiation

1.8.3 Derivatives of Trignometrical Functions

1.9 Integration

1.9.1 Fundamental Formulae of Integration

1.9.2 Definite Integrals

 

2.  Kinematics (Motion in one, two and three dimensions)

2.1    Description of motion in One Dimension

2.1.1    A body

2.1.2    Particle

2.1.3    Motion in one dimension

2.1.3.1 Motion

2.1.3.2 Frame of reference

2.1.3.3 Position of an object

2.1.3.4 Position vector

2.1.3.5 Displacement

2.1.3.6 Distance

2.1.3.7 Difference between distance and displacement

2.1.3.8 Velocity

2.1.3.9 Acceleration

2.1.4    Uniform and non uniform motion

2.1.4.1 Graphical representation of the uniform motion

2.1.4.2       Velocity vector in non uniform motion

2.1.4.3       Instantaneous velocity

2.1.4.4       Acceleration vector in non uniform motion

2.1.5    Relative velocity

2.1.6    Equations of motion

2.1.6.1 Distance travelled in nth second

2.1.7    Graphs (straight line motion)

2.1.7.1 Position time graph

2.1.7.2 Velocity time graph

2.1.7.3 Acceleration time graph

2.1.8    Analysis of uniformly accelerated motion

2.1.9    Motion under gravity

2.2    Scalars and vectors

2.2.1    Scalars

2.2.2    Vectors

2.2.2.1 Representation of a vector

2.2.2.2 Unit vector

2.2.2.3 Parallel vectors

2.2.2.4 Equal vectors

2.2.2.5 Negative vector

2.2.2.6 Null vector

2.2.2.7 Invariance of the vector

2.2.3    Addition and subtraction of vectors

2.2.3.1 Geometrical method

2.2.3.2 Resolution of a vector

2.2.3.3 Law of parallelogram of vectors

2.2.3.4 Vector subtraction

2.2.3.5 Properties of vector addition

2.2.4    Multiplication of vectors

2.2.4.1 Multiplication of a vector by a scalar

2.2.4.2 Multiplication of a vector by vector

2.2.4.3 Dot product or scalar product

2.2.4.4 Cross product or vector product

2.3    Description of motion in Two Dimensions

2.3.1    Projectile

2.3.2    Motion of projectile

2.3.2.1 Horizontal projection

2.3.2.2 Projectile motion on an inclined plane

2.3.2.3 Motion down the plane

2.4    Uniform Circular Motion

2.4.1    Circular motion

2.4.2    Uniform circular motion

2.5 Motion of object in three dimensional space

 

3.     Laws of motion

3.1    Newton’s first law of motion

3.1.1    Inertia

3.1.2    Momentum

3.2    Newton’s second law of motion

3.2.1    Impulse

3.3    Newton’s third law of motion

3.3.1    Illustrations of Newton’s third law of motion

3.4    Types of forces

3.4.1    Force

3.4.2    Classification of forces

3.5    Apparent weight of a man in a lift/Elevator

3.6    Law of conservation of linear momentum

3.6.1    Applications of law of conservation of linear momentum

 3.6.1.1 Rocket propulsion

3.7    Equilibrium of concurrent forces

3.8    Friction

3.8.1    Sliding friction

3.8.2    Cause of sliding friction

3.8.3    Types of friction

3.8.4    Rolling friction

3.8.5    Cause and direction of rolling friction

3.8.6    Laws of friction

3.8.7    Coefficient of friction

3.8.8    Angle of friction

3.8.9    Angle of response

3.9       Inertial and non-inertial frames

3.10  Solved examples

 

4.     Work, Energy and Power

4.1    Work

4.1.1 Work Done by a Constant Force

4.1.2 Work depends on the frame of reference

4.1.3    Work Done by a Variable Force

4.2    Conservative and Non-Conservative Forces

4.3    Mechanical Energy

4.3.1 Kinetic Energy

4.3.2 Potential Energy

4.3.2.1 Gravitational Potential Energy

4.3.2.2 Elastic Potential Energy and Kinetic Energy

4.3.2.3 Work Energy Theorem

4.3.2.4       Conservation of Mechanical Energy

4.4 Collisions

4.4.1 Types of Collision

4.4.1.1 Elastic collision

4.4.1.2 Inelastic collision

4.4.2 Coefficient of restitution

4.4.3  Velocities of colliding bodies after collision

4.4.4 Elastic collision in one dimension

4.4.5    Perfectly inelastic collision in one dimension

4.4.6    Elastic collision in two dimensions

4.4.7    Inelastic collision in two dimensions

4.5    Power

4.6    Conservative and non conservative forces

4.7    Different forms of energy

4.8    Mass energy equivalence

4.9    The principle of conservation of energy

4.10                                   Solved Examples

 

5.     Rotational Motion

5.1 Centre of mass

5.1.1 Centre of Mass for a Continuous Distribution

5.1.2 Motion of Centre of Mass

5.1.3 Velocity of the centre of mass of a system of particles

5.1.4 The centre of mass of rigid bodies

5.1.5 Kinds of motion of a rigid body

5.2 Moment of a force or torque

5.2.1 Expression for torque in Cartesian coordinates

5.3 Angular Momentum of a Particle

5.3.1 Geometrical meaning of angular momentum

5.3.2 Principle of conservation of angular momentum

5.3.3    Some examples of conservation of angular momentum

5.4  Dynamics of circular motion

5.4.1       Definition of circular motion

5.4.2       Kinematics of circular motion

5.4.2.1    Angular variables

5.4.3       Centripetal force

5.4.4    Centrifugal force

5.4.5    Applications of centripetal and centrifugal forces

5.4.6    Methods of reducing friction

5.5 Moment of inertia

5.5.1 Moment of inertia of some bodies of regular shape

5.5.2 Radius of gyration

5.5.3 Torque and moment of inertia

5.5.4 Angular momentum and moment of inertia

5.6 Theorem of parallel axes

5.7 Theorem of perpendicular axes

5.8 Rigid body dynamics

5.8.1 Laws of rotational motion

5.8.2 Equations of rotational motion

5.8.3 Comparison between translatory (linear) and rotational motion

5.9    Solved examples

 

6  Gravitation

6.1 Newton’s Law of Gravitation

       6.1.1 Inertial and gravitational masses

6.2 Acceleration due to Gravity (g)

6.2.1 Variation of Acceleration due to Gravity

6.3  Kepler’s Laws of Planetary motion

6.3.1 Kepler’s Second Law

6.4 Gravitational Field and Intensity

6.5 Gravitational Potential Energy

6.6 Gravitational Potential

6.6.1 Gravitational potential due to a shell

6.6.2 Gravitational potential (V) due to a uniform solid sphere

6.6.3 Binding Energy

6.7 Escape velocity

6.8 Orbital velocity

6.8.1 Expression for orbital velocity

6.9. Time period of satellite

6.10 Geostationary Satellite

6.11 Weightlessness

6.12 Solved examples

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRICITY AND MAGNETISM

 

Contents

 

1. Electrostatics

1.1 Introduction

1.2 Electric Charge

1.2.1 Two kinds of electric charges

1.2.2 Additive nature of charge

1.2.3 Quantization of charge

1.2.4 Conservation of charge

1.2.5 Properties of electric charge

1.3 Coulomb’s Law

1.3.1 Relative permittivity (dielectric constant)

1.3.2 Principle of superposition

1.4 Electric Field

1.4.1 Electric field intensity

1.4.2 Electric field due to a point charge   

1.4.3 Representation electric field

1.4.4 Field lines in case of system of two charges

1.4.5 Electric field due to a discrete distribution of charges

1.4.6 Electrical Lines of forces

1.4.6.1 Properties of electric lines force

1.5 Electric dipole

1.5.1 Electric dipole moment

1.5.2 Electric field on axial line of an electric dipole

1.5.3 Electric field on equatorial line of an electric dipole

1.5.4 Electric field at any point due to an electric dipole

     1.5.5 Torque on a dipole in a uniform electric field

1.6 Electric flux

      1.6.1 Gauss’ theorem

      1.6.2 Gaussian surface

      1.6.3 To deduce Coulomb’s law from gauss’ theorem

      1.6.4 Application of gauss law

1.7 Electric Potential

1.7.1 Principle of superposition

1.7.2 Equipotential surface

1.7.3 Electric Potential Energy

1.7.4 Relationship between Electric potential energy (U) and electric force

1.7.5 Earthing

1.8 Conductors and Insulators

1.9 Dielectrics

1.9.1 Polar dielectrics

1.9.2 Non-polar dielectric

1.10 Polarization

1.10.1 Polarization of a dielectric slab

1.10.2 Dielectric constant

1.10.3 Polarization density

1.10.4 Electric susceptibility

1.11. Capacitance

1.11.1 Parallel plate capacitor

1.11.2 Grouping of capacitors

1.11.3 Capacitance of parallel plate capacitor with a dielectric slab between the plates

1.11.4 Energy stored in a capacitor

1.11.5 Stored energy in terms of the Electric field

1.12. Van de Graff generator

1.13 Solved Examples

 

2. Current Electricity

2.1 Electric Current

2.1.1 Current density

2.1.2 Drift Velocity

2.1.3 Current and drift velocity

2.1.4 Ohm’s law

2.1.5 Electrical resistance

2.1.6 Electrical resistivity

2.1.7 Resistivity of various materials

2.1.8 Temperature dependence of resistivity and resistance

2.1.9 Thermistors

2.1.10 Superconductors

2.1.11 V-I characteristics of ohmic and non ohmic conductors

2.1.12 Electric energy

2.1.13 Electric power

2.1.14 Colour code for carbon resistors

2.1.15 Grouping of Resistors

2.2 Electric cell

2.2.1 Cells

2.2.2 Internal resistance of a cell

2.2.3 Factors affecting Internal Resistance of a cell

2.2.4 Internal Resistance of a cell in terms of E, V and R

2.2.5 Electromotive force (emf) and potential difference of a cell

2.2.6 Grouping of cells

2.3 Kirchhoff’s laws

2.4 Wheatstone bridge

2.5 Meter Bridge

2.5.1 Applications of Meter Bridge

2.6 Potentiometer

2.6.1 Applications of a potentiometer

2.7 Solved Examples

 

3. Thermal and chemical effects of current

3.1 Heating Effect of current: Joule’s Law

3.1.1 Cause of Heating Effect of Current

3.1.2 Heat Produced by Electric Current

3.1.3 Some Aspects of Heating Effects of Current

3.2 Electric Power

3.3 Electric Energy

3.4 Maximum Power Transfer Theorem

3.5 Chemical Effects of Electric Current

3.5.1 Electrolysis

3.5.2 Faraday’s Laws of Electrolysis

3.5.3 Faraday Constant

 

3.6 Thermoelectric Effects of Current

3.6.1 Seebeck Effect

3.6.2 Origin of Thermo E.M.F

3.6.3 Effect of Temperature on Thermo E.M.F

3.6.4 Relation between Tn and Ti

3.6.5 Thermo-Electric Power

3.6.6 Peltier Effect

3.6.7 Thomon’s Effect

3.6.8 Relation between Seebeck, Petlier and Thomson’s coefficients

3.6.9 Application of Thermoelectric Effects

3.6.10 Thermo Electric Thermometers

3.7 Solved Examples

 

4. Magnetic Effect of Current and Magnetism

4.1 Magnetic effect of current

4.1.1 Introduction

4.1.1.1 Oersted’s Experiment

4.1.1.2 Rules to determine the direction of magnetic field

4.1.2 Magnetic Force

4.1.2.1 Magnetic Field, Lorentz Force

4.1.3 The Biot - Savart Law

4.1.3.1 Magnetic Field due to a Straight Wire carrying current

4.1.3.2 Magnetic Field Lines

4.1.3.3 Magnetic Field due to a Circular Loop carrying current:

4.1.3.4 Magnetic Field due to a Solenoid

4.1.4 Ampere’s Circuital Law

4.1.4.1 Applications of Ampere’s circuital law

4.1.5 Force on a charge

4.1.5.1 Force on a charge in electric field

4.1.5.2 Motion of a charge inside electric field

4.1.5.3 Force on a charge moving inside a magnetic field

4.1.5.4 Motion of charge inside magnetic field

4.1.5.5 Cyclotron

4.1.5.6 Force on a current carrying conductor placed inside a magnetic field

4.1.5.7 Force between two infinitely long parallel current carrying conductors

4.1.5.8 Torque on a current carrying loop placed inside a magnetic field

4.1.6 Moving coil galvanometer

4.1.6.1 Sensitivity of a galvanometer

4.1.6.2 Conversion of galvanometer to Ammeter

4.1.6.3 Conversion of galvanometer to Voltmeter

4.1.7 Solved Examples

4.2 Magnetism

4.2.1 Magnetic dipole

4.2.1.1 Magnetic dipole moment

4.2.1.2 Current loop and magnetic dipole

4.2.1.3 Bar Magnet as an Equivalent Solenoid

4.2.1.4 Magnetic field due to a bar magnet

4.2.1.5 Torque on a magnetic dipole in a magnetic field

4.2.1.6 Potential energy stored in a magnetic dipole on rotating inside a magnetic field

4.2.2 Magnetic Field Lines

4.2.2.1 Properties of Magnetic Lines of Force

4.2.3 Earth’s magnetic field and magnetic elements

4.2.4 Tangent law

4.2.4.1 Tangent galvanometer

4.2.4.2 Vibration magnetometer

4.2.5 Classification of Magnetic materials

4.2.5.1 Intensity of magnetization

4.2.5.2 Magnetic induction

4.2.5.3 Magnetic susceptibility

4.2.5.4 Magnetic permeability

4.2.5.5 Curie temperature

4.2.5.6 Curie’s law

4.2.5.7 Hysteresis

4.2.5.8 Permanent Magnets

4.2.5.9 Electromagnets

4.2.5.10 Some Useful Facts

4.2.6 Solved Examples

 

5. Electromagnetic Induction and Alternating Currents

5.1 Electromagnetic induction

5.1.1 Introduction

5.1.2 Magnetic flux

5.1.3 Faraday’s laws of electromagnetic induction

5.1.4 Induced EMF and Current

5.1.5 Lenz’s law

5.1.6 Lenz’s Law and Conservation of Energy

5.1.7 Motional emf

5.1.8 Eddy currents

5.1.9 Self Induction

5.1.10 Coefficient of self induction

5.1.11 Grouping of inductors

5.1.12 Energy stored in an inductor

5.1.13 Self inductance of a long solenoid

5.1.14 Energy stored in a solenoid

5.1.15 Mutual induction

5.1.16 Coefficient of mutual induction

5.1.17 Mutual inductance of two long solenoids   

5.2 Alternating Currents

5.2.1 Alternating Current and Voltage

5.2.2 AC Circuit Elements

5.2.2.1 Pure Resistive Circuit

5.2.2.2 Pure inductive Circuit

5.2.2.3 Pure Capacitive Circuit

5.2.3 Reactance and Impedance

5.2.4 Power in an AC Circuit

5.2.5 Series AC Circuits

5.2.5.1 Series LR Circuit

5.2.5.2 Series RC Circuit

5.2.5.3 Series LC Circuit

5.2.5.4 Series LCR Circuit

          5.2.6 LC oscillations

5.2.7 Wattless Current

5.2.8 Electric Generator

5.2.8.1 AC Generator

5.2.9 Transformer

5.2.10 Induction coil

5.2.11 Electric motor

5.2.12 Choke coil

5.3 Solved Examples

 

6. Electromagnetic Waves

6.1 Conduction current

6.2 Displacement current

6.3 Modified Ampere circuital law

6.4 Maxwell’s equations

6.5 Electromagnetic waves

6.5.1 Characteristics of electromagnetic waves

6.5.2 Sources of electromagnetic radiation

6.5.3 Detectors of electromagnetic radiation

6.5.4 Properties of electromagnetic waves

6.5.5 History of electromagnetic waves

6.6 Electromagnetic spectrum

6.6.1 Applications of Electromagnetic Spectrum

6.7 Solved Examples

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HEAT AND THERMODYNAMICS

&

OSCILLATIONS AND WAVES

 

Contents

 

1. Heat and Thermodynamics

1.1  Introduction

1.2  Thermal equilibrium

1.3  Zeroth law of thermodynamic

1.3.1 Three different Scales of Temperature

1.3.2 Conversion of temperature from one scale to another

1.3.3 Constant volume Gas Thermometer

1.3.4 Constant Pressure Thermometer

1.3.5 Platinum resistance thermometer

1.4  Thermodynamic state variables

1.5  Thermodynamic equation of state

1.6  Thermodynamic processes

1.7  Indicator diagram or P-V diagram

1.8  Pressure temperature phase diagram

1.9  Heat, Internal energy and Work

1.10  First law of Thermodynamics

1.10.1   Important points regarding first law of thermodynamics

1.10.2   Applications of the First law of thermodynamics

1.11 Specific heats of gases

1.11.1 Relation between Specific heats of the gas

1.12 Isothermal Process

1.13 Adiabatic process

1.14 Graphs of expansion process

1.15 Graphs of compression process

1.16  Second law of Thermodynamics

1.17 Reversible and irreversible process

1.18 Heat engine

1.18.1 Thermal efficiency of a heat engine

1.18.2 Types of Heat engines

1.18.3 Principle of a refrigerator (or heat pump)

1.19 Carnot Cycle

1.19.1 Efficiency of Carnot engine

1.19.2 Carnot theorem

1.20  Entropy

1.21  Solved examples

1.22  Heat Transfer

1.22.1 Introduction

1.22.2 Thermal conductivity

1.22.3 Absorptive Power

1.22.4 Emissive Power E

1.22.4.1 Emissitivity

1.22.5 Black Body

1.22.6 Kirchoff’s Law

1.22.7 Stefan’s Law of Radiation

1.22.8 Newton’s Law of Cooling

1.22.9 Wien’s law

1.22.10 Solar Constant

1.22.10.1 Surface temperature of sun

1.22.11 Solved examples

 

2. Oscillations and waves

2.1 Oscillations

2.1.1 Periodic motion

2.1.1.1 Oscillatory motion

2.1.1.2 Harmonic functions

2.1.1.3 Simple Harmonic oscillations

2.1.1.3.1 Mathematical representation of simple harmonic oscillations

2.1.1.3.2 Graphical representation of simple harmonic oscillations

2.1.1.4 Non-Harmonic oscillations

2.1.1.4.1 Graphical representation of non-harmonic oscillations

2.1.1.5 Terms related to periodic motion

2.1.1.6 Periodic function

2.1.2 Simple Harmonic motion

2.1.2.1 Geometrical interpretation of S.H.M.

2.1.2.2 Characteristics of Simple Harmonic Motion

2.1.3 Total energy in S.H.M.

2.1.3.1 Potential Energy

2.1.3.2 Kinetic Energy

2.1.3.3 Total Energy

2.1.3.4 Graphical representation of total energy of SHM

2.1.4 Oscillations of a loaded spring

2.1.4.1 Vibrations in the horizontal direction

2.1.4.2 Vibrations of a vertical spring

2.1.4.3 Oscillations of loaded spring combination

2.1.5 Simple pendulum

2.1.6 Free oscillations

2.1.7 Forced oscillations

2.1.8 Undamped simple harmonic oscillations

2.1.9 Damped simple harmonic oscillations

2.1.10 Resonant oscillations

2.1.11 Solved Examples

2.2 Waves

2.2.1 Introduction

2.2.1.1 Characteristics of a wave

2.2.1.2 Properties of waves

2.2.1.3 Wave Motion

2.2.1.4 Types of Wave

2.2.1.5 Types of mechanical Wave Motion

2.2.1.6 Some important points related with the wave motion

2.2.1.7 Characteristics of material medium for the propagation of transverse wave

2.2.1.8 Characteristics of transverse waves

2.2.1.9 Characteristics of longitudinal waves

2.2.1.10 Characteristics of wave motion

2.2.2 Equation of a plane progressive simple harmonic Wave

2.2.2.1 Phase and phase difference

2.2.2.2 Relation between particle velocity and wave velocity

2.2.2.3 Particle acceleration

2.2.3 Sound waves

2.2.3.1 Speed of a travelling wave

2.2.3.2 Speed of transverse waves on a stretched string

2.2.3.3 Speed of Longitudinal waves

2.2.3.4 Newton’s Formula for velocity of sound in Gases

2.2.3.5 Error in Newton’s Formula

2.2.3.6 Laplace’s Correction

2.2.3.7 Factors affecting velocity of sound

2.2.4 Reflection of waves

2.2.4.1 Reflection from a hard boundary

2.2.4.2 Reflection from a Soft boundary

2.2.4.3 Reflection of Circular Waves

2.2.4.4 Point source of sound reflecting from a plane surface

2.2.4.5 Reflection from Concave Surface

2.2.4.6 Reflection of waves at a closed end (denser medium)

2.2.4.7 Reflection of waves at an open end (rarer medium)

2.2.4.8 Important practical applications of reflection of sound waves

2.2.4.9 The principle of superposition of waves

2.2.5 Standing waves or Stationary waves

2.2.5.1 Characteristics of a standing waves or stationary waves

2.2.5.2 Standing waves on a string

2.2.5.3 Laws of vibrations of stretched strings

2.2.5.4 Standing waves in pipes

2.2.5.4.1 Standing waves in closed organ pipes

2.2.5.4.2 Standing waves in open organ pipes

2.2.6 Beats

2.2.6.1 Formation of Beats

2.2.6.2 Demonstration of Beats

2.2.6.3 Applications of the phenomenon of beats

2.2.7 Doppler Effect in sound

2.2.7.1 Doppler shift

2.2.7.2 Application of Doppler Effect

2.2.8 Solved Examples

 


OPTICS

 

Contents

 

 

1. Ray Optics

1.1 Introduction

1.2 Reflection of light

1.2.1 Important terms related to reflection

1.2.2 Laws of reflection

1.2.3 Image formation

1.2.4 Characteristics of the image formed by a plane mirror

1.2.5 Spherical mirrors

1.2.6 Some important definition

1.2.7 Relation between F and R

1.2.8 Rules for Image formation

1.2.9 Image formation by concave mirror

1.2.10 Sign Convention

1.2.11 Mirror Formula

1.2.12 Linear Magnification

1.3 Refraction

1.3.1 Laws of Refraction

1.3.2 Refractive index

1.3.3 Lateral Deviation (through a glass slabs)

1.3.4 Apparent depth

1.3.5 Critical angle & total internal reflection

1.3.5.1 Applications of Total internal reflection

1.3.6 Refraction at a Single Spherical Surface

1.3.7 Lens

1.3.7.1 Types of lenses

1.3.7.2 Optical Centre

1.3.7.3 Principal Axis

1.3.7.4 Focus (F)

1.3.7.5 Rules for Image Formation

1.3.7.6 Lens Makers Formula

1.3.7.7 Lens Formula

1.3.7.8 Power of Lens

1.3.7.9 Combination of Lenses

1.4 Dispersion of light

1.4.1 Refraction through Prism

1.4.2 Minimum Deviation

1.4.3 Dispersion of Light through Prism

1.4.4 Angular Dispersion   

1.4.5 Dispersive Power (W)

1.4.6 Dispersion without Deviation

1.4.7 Deviation without Dispersion (Achromatic Combination of Prism)

1.5 Spectrometer

1.6 Absorption and emission spectra

1.7 Scattering of light

1.7.1 Illustrations of Rayleigh’s scattering of light

1.8 Formation of rainbow

1.9 Solved examples

 

2. Optical instruments

2.1 Human eye

2.1.1 The Important Parts of the Eye and their Functions

2.1.2 Accommodation of the Eye

2.1.3 Power of Accommodation

2.1.4 Near point or Least Distance of Distinct Vision

2.1.5 Far Point

2.1.6 Range of Vision

2.1.7 Defects of Vision and their Correction

2.2 Simple Microscope

2.3 Compound Microscope

2.4 Telescope

2.4.1 Astronomical Telescope (Refracting Type)

2.4.2 Reflecting Type Telescope (Cassegrain Telescope)

2.4.3 Some Important Features of a Telescope

2.5 Solved Examples

 

3. Wave Optics

3.1 Wave Front

3.2 Huygens’s Principle

3.3 Laws of Reflection on Wave Theory

3.4 Refraction On The Basis Of Wave Theory

3.5 Principle of Superposition

3.5.1 Coherence

3.5.2 Interference

3.6 Young’s double slit Experiment

3.7 Diffraction of Light

3.7.1 Diffraction at a Single Slit (Fraunhofer Diffraction)

3.8 Rayleigh’s Criterion of Limiting Resolution

3.9 Resolving Power of a Microscope

3.10 Resolving Power of a Telescope

3.11 Polarisation of Light

3.11.1 To Detect Plane Polarised Light

3.11.2 Polarisation by Reflection

3.11.3 Brewster’s Law

3.11.4 Polarisation by Scattering

3.11.5 Law of Malus

3.11.6 Polaroids

3.12 Solved Examples